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ABSTRACT
This paper studies market-makers, agents responsible for
maintaining liquidity and orderly price transitions in mar-
kets. Market-makers include major firms making markets
on global stock exchanges, as well as software agents that
run behind the scenes on novel electronic markets like pre-
diction markets. We use a sophisticated model of market-
making to build richer agent-based models of markets and
show how these models can be useful both in understanding
properties of existing markets and in predicting the impacts
of structural changes. For example, we show how compe-
tition among market-makers can lead to significantly faster
price discovery following a jump in the true value of an asset.
We also show that myopic profit-maximization, apart from
leading to poor market quality, is sub-optimal even for a mo-
nopolistic market-maker. This observation leads to an inter-
esting characterization of the market-maker’s exploration-
exploitation dilemma as a tradeoff between price discovery
and profit-taking.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Economics

Keywords
Agent-based simulations :: emergent behavior, Economic
paradigms :: electronic markets and institutions

1. INTRODUCTION
With the dramatic increase in electronic exchanges and

automated trading in recent years, it has become important
to develop new computational and algorithmic tools for ana-
lyzing market properties and designing software agents that
participate in market activities. Many aspects of exchanges
and price dynamics have recently received attention from
an algorithmic perspective. For example, Kakade et al [10]
study algorithmic trading in terms of the problem of opti-
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mizing trade execution, and Even-Dar et al [5] examine the
dynamics of order-books under different models of trading.

This paper contributes to this growing literature by study-
ing the role of market-makers. Most modern exchanges,
ranging from major equity markets like the NYSE and NAS-
DAQ to electronic betting and prediction markets like trade-
sports.com, employ or designate agents with special respon-
sibilities for maintaining liquidity and orderly price transi-
tions. These market-makers are obligated to continuously
post and honor two-sided (buying and selling) prices.

While market-makers have traditionally been employed by
large stock exchanges, novel modern markets like prediction
markets are now using market-makers to improve market
quality [18]. These markets are often illiquid, and the pres-
ence of market-makers can bootstrap them into a sufficiently
liquid phase to attract trading. We need to better under-
stand the impact of market-makers in such markets.

The market-making problem can be analyzed from two
perspectives. First, how does one design an effective market-
making algorithm, given some knowledge of the market struc-
ture? Second, what are the implications of the presence
of market-makers using these algorithms on price dynam-
ics? This paper builds on previous theoretical and simula-
tion studies on market-making to analyze price properties
in stylized market models when market-makers are present
with different constraints on their behavior.

We focus particularly on price dynamics, rather than just
equilibrium behavior. The efficient markets hypothesis, in
its various forms, says that prices reflect all available in-
formation. But how do prices come to reflect the available
information? What processes do markets follow to incorpo-
rate new information into prices? As an example, suppose
new positive information about a stock is relayed to all the
participants in a stock market. We know that the traded
price should go up to reflect the new information. However,
what process will it follow in its rise? Will the increase be
orderly and in small increments or will there be a sudden
jump? How will the price process be affected by different
possible market structures? Computational modeling is an
ideal tool for studying these problems.

Specifically, this paper considers the market-maker’s pric-
ing problem in markets populated by traders who receive
better information about the value of a stock than the market-
maker. Typically, this happens when there is an informa-
tional shock that provides information to some traders (for
example, the release of an analyst report to subscribers).
The market-maker must set bid and ask prices to at least
offset the adverse selection costs she incurs by trading with



potentially better informed traders.
We start by summarizing some relevant background in

market microstructure, and then present the model and sim-
ulation results. We show that a myopically optimizing market-
maker does not achieve maximal long-run profit, and pose
the problem of how to optimally balance exploration and
exploitation in this setting. We also demonstrate that the
presence of market-makers can speed up the process of price
discovery and lead to better market quality even when other
traders are allowed to place limit orders.

2. MARKET MICROSTRUCTURE
The field of market microstructure is concerned with the

specific mechanisms and rules that govern trading in a mar-
ket and how these mechanisms impact price formation and
the trading process (two comprehensive surveys are [15, 13]).
This is markedly different from much of economics and fi-
nance theory that abstracts away from the process of trading
and assumes equilibrium pricing. Traders in real markets
have to interact with some kind of realistic pricing mecha-
nism. We cannot just assume that all trading takes place
at an equilibrium price conveniently determined by a Wal-
rasian auctioneer who sets the price to clear the market with
knowledge of every potential trader’s demand function. The
insights provided by the study of microstructure can have
great impact in the design and regulation of markets.

2.1 Limit Orders and Market Orders
Most modern markets function as continuous double auc-

tions with two types of orders, known as limit orders and
market orders.1 Market orders are guaranteed immediate
execution, but not price. That is to say, if an agent places
a market order to buy or sell a certain number of shares,
those shares will be bought or sold at the prevailing market
prices. This is what is commonly thought of as a buy or sell
order in the market. A typical market order will be of the
form “Buy/Sell X shares.”

The prices at which market orders execute are determined
by the limit order book. Traders may also place limit or-
ders of the type “Buy/Sell X shares at price Y.” the highest
buy limit order and the lowest sell limit order constitute the
market bid and ask prices, and the difference between them
is known as the bid-ask spread or just the spread. When a
market buy order arrives, it is executed against the lowest
limit sell order, and, similarly, a market sell order is exe-
cuted against the highest limit buy order. Figure 1 shows
an example.

2.2 Liquidity and Market-Making
Different exchanges may employ one or multiple market-

makers. The key function of a market-maker is the provi-
sion of liquidity – ensuring that there is enough interest in
a stock to maintain a reasonable amount of trading without
steep price changes. An exchange would want to employ
firms to make markets in securities in order to ensure the
smooth functioning of the market. As a trader, one wants
to be assured that (1) market orders will get executed in a

1For the modeling purposes of this paper we are not con-
cerned with the precise functioning of the order book, but
an excellent description from a modern perspective can be
found in the recent work of Kakade et al [10], and a more
elaborate, albeit older, description is that of Schwartz [17].
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Figure 1: Example of a market buy order for 1000
shares executing against the limit sell order book.
First, 600 shares execute at $77.75 against Order A,
then 400 shares execute against Order B at $77.79.
The volume weighted average price of this order ex-
ecution is then $77.766. Note that the remaining
200 shares of Order B remain on the book.

reasonable amount of time, and (2) market orders of a rea-
sonable size will execute at prices close to the quoted bid
and ask prices. If an exchange cannot make these guaran-
tees, traders may not be willing to trade on the exchange,
and firms would not want to be listed on the exchange.

Of course, liquidity in markets is partly a function of
traders themselves placing limit orders. The depth of the
limit order book, and the differences in price between ad-
jacent orders usually provide a good measure of liquidity.
However, most traders are never obligated to place limit
orders, and limit orders can also be cancelled after being
placed. Therefore, one can never guarantee execution of a
market order in the absence of an institutional structure that
ensures the existence of a trader always willing to take the
other side of a trade.

A large shock, say from a surprising earnings report, can
quickly lead to major changes in the valuations of those trad-
ing in a stock, and it is likely that one side of the market
(the buy side if the shock is negative and the sell side if it
is positive) will become thin. The market-makers in a stock
are supposed to ensure that there are no large sudden jumps
in the price by stepping in and absorbing the other side of
orders no one else wants to absorb in this situation. This
will guarantee that no trader feels like they got a bad deal
because the trade immediately before theirs executed at a
significantly better price.

Major exchanges have adoped different models for liq-
uidity provision through market-making. For example, the
NYSE employs a single, regulated specialist2 for each stock,
while the NASDAQ relies on competition between multiple
market-makers.

2.3 Microstructure Theory
Market microstructure theory typically relies on stylized

market models to gain insights into the functioning of the
market, and how different structural changes can impact

2In practice market-makers tend to be large banking firms.



price formation. There is an extensive literature in eco-
nomics and finance on information-based market modeling.
While it is impossible to provide a comprehensive bibliogra-
phy here, O’Hara’s book [15] is an excellent starting point.
Besides the canonical models of Glosten and Milgrom [7]
and Kyle [11], a number of papers by Easley and O’Hara
(for example [4]) consider the process of price adjustment
as a reaction to information in securities markets. Gross-
man and Miller [8] consider the effects of market structure
on liquidity. There is also a large empirical literature that
is beyond the scope of this paper. We turn instead to a dis-
cussion of how to think about market quality and liquidity.

While the entire limit-order book provides important in-
formation about market quality and price formation, we can
gain insight just by examining the bid and ask prices over
time. The bid-ask spread serves as an indicator of market
quality and liquidity, and, if it is assumed that the market
functions reasonably efficiently, it can also proxy for hid-
den variables like the heterogeneity of information or beliefs
about the valuation of a stock.

If we model all transactions as going through a single
market-maker, then the spread compensates the market-
maker for three different kinds of costs: (1) transaction costs,
(2) inventory holding costs, and (3) adverse selection costs
[15]. The market-maker must be compensated for the cost
of doing business, which falls under the category of trans-
action costs. Even in the absence of transaction costs, the
market-maker must be compensated for the risk she bears
by holding inventory [1], so a spread will still arise.

The third type of cost mentioned above, and the focus of
this paper, is the adverse selection cost borne by the market-
maker in interacting with traders who potentially have bet-
ter information available to them. This was first studied in
detail by Glosten and Milgrom [7], who showed that trans-
action prices form a martingale under the assumption that
a zero-profit market-maker sets bid and ask prices to the
expected value of the stock given that a sell or buy order,
respectively, is received. Das [3] extended this model by
providing a practical algorithm for setting dollar-and-cent
prices under some assumptions about the nature of the trad-
ing crowd. This paper considers different possible behaviors
on the part of the market-maker and the trading crowd.

2.4 Agent-Based Financial Modeling
Agent-based modeling is assuming an increasingly impor-

tant role in the study of microstructure. For example, Dar-
ley et al [2] used agent-based models to predict the impact
of decimalization on the NASDAQ. LeBaron provides an ex-
cellent summary of much of the early work in agent-based
computational finance [12]. At the same time, much compu-
tational modeling has been from the econophysics perspec-
tive. Econophysicists typically use low-intelligence models
of agents and focus more on the dynamics of the collec-
tive behavior of these agents, trying to show how complex
phenomena can arise from simple agents and simple inter-
actions, using the tools of statistical mechanics [14; 9, inter
alia]. This paper takes a middle ground – we assume low
intelligence behavior on the parts of the trading crowd, but
use this to formulate an interesting optimization problem for
the market-maker, who is more likely to spend the resources
on solving difficult problems.

3. THE MODEL

The market model is based on those in [3] and [7]. In all
cases there is one market-maker, and a trading crowd.

3.1 Structure of trading:
Each trading episode is divided into n units of time, or

trading periods. There is one security or stock in the mar-
ket. For convenience, assume the existence of a true, or
fundamental, value of the stock. In each episode, at time
0, this true value V is sampled from a normal distribution
with mean µV and standard deviation σV (µV and σV are
known to the market-maker). This represents an informa-
tional shock occurring before each trading episode begins.
The true value remains constant for the rest of the episode.

At each trading period i, the market-maker sets bid and
ask prices for one unit of stock, P i

b′ and P i
a′ . The market

bid price P i
b is then the maximum of the market-maker’s

bid price and the prices in the limit buy order book, and the
market ask price P i

a is the minimum of the market-maker’s
ask price and the prices in the limit sell order book. Only
unit trade sizes are considered at each time period. Informa-
tion can also be conveyed by the patterns and size of trades
(Kyle’s model [11] is a canonical example), but the present
work abstracts away from those considerations.

3.2 The trader model:
At each time period i, one trader is randomly selected

from the (assumed infinite) trading crowd. This trader val-
ues the stock at W i ∼ N(V, σ2

W ). If W i > P i
a then the

trader buys one unit of the stock. If W i < P i
b then the

trader sells one unit of the stock. When neither of these
conditions hold, two different possibilities are considered.
First, if the trading crowd is not permitted to place limit
orders, then the trader places no trade. If the trading crowd
is allowed to effectively compete with the market-maker by
placing limit orders, then the trader selects a price P i

l uni-
formly at random between P i

b and P i
a. Then a limit order is

placed for one unit at the price P i
l . The order is a buy order

if P i
l < W i and a sell order otherwise. This is a modification

of the “zero-intelligence” model of Farmer et al [6], although
in their case, traders can place limit orders in a wider range.
Traders may not cancel limit orders.

3.3 The market-maker model:
The market-maker uses an algorithm which extends that

developed by Das [3]. This section explains that algorithm
and novel extensions to myopically optimizing market-makers
and markets in which traders place limit orders. The key
aspect of the algorithm is that the market-maker uses the
information conveyed in trades to update her beliefs about
the “true” value of the stock, and sets prices based on these
beliefs. The market-maker maintains a probability density
estimate over the true price of the stock. This estimate
is maintained by assigning positive probabilities to discrete
points that correspond to dollar-and-cent values in the range
[µV − 4σV , µV + 4σV ].3 The density estimate is initialized
by taking values of the normal pdf at all points in the range
and normalizing the vector. While the initial prior is Gaus-
sian, the MM’s beliefs do not remain Gaussian after the first
update.

There are two key steps involved in the market-making
algorithm. The first is the computation of bid and ask prices

3The actual number of standard deviations used can affect
pricing near the ends of the distribution.



given a density estimate of the kind described above, and
the second is the updating of the density estimate given the
information implied in trades.

3.3.1 Calculating Prices
Assuming she has access to a density estimate of the form

specified above, the market-maker can compute the expected
profit she would make from any particular bid or ask price.
The expected profit computations assume that the stock can
be liquidated at the “true” value at the end of an episode.
Here we explain the process for the bid price; the ask price
computation is analogous. Let πS denote profit from a mar-
ket sell order being received. That is, πS is the expected
profit given that if any order is received, it is a market sell
order. Equivalently, it is the expected profit at that time
step if the market-maker’s ask price is infinite. Then ex-
pected profit at a time step will be the sum of πS and an
equivalently computed πB . Dropping the superscripts i, be-
cause we are only considering one trading period:

E[πS |Pb = x] =

VmaxX
y=Vmin

Pr(V = y)

Pr(Sell|Pb = x, V = y)(y − x)

Now, Pr(V = y) is known from the density estimate. The
term remaining to be computed is Pr(Sell |Pb = x, V = y).
A trader will only sell if she thinks the stock is overvalued,
i.e the trader’s valuation is lower than the bid price, so it
must be the case that y +N (0, σ2

W ) < x. Therefore

Pr(Sell |Pb = x, V = y) = Pr(N (0, σ2
W ) < x− y)
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Figure 2: An example of the expected profit vec-
tor for the bid price. This is computed using the
initial density estimate of the market-maker before
any trades have occurred. The vertical lines show
the myopically optimal (left) and ε-profit (perfectly
competitive, right) prices.

For each possible bid and ask price, the market-maker can
thus compute an expected profit. Figure 2 shows the form
this vector typically takes for bid and ask prices. Glosten

MM Type Profit Spread # Trades
Zero-profit 0.507± .076 0.61 80.3
Myopically opt. 4.438± .164 1.46 30.6
Zero-profit ±δ 4.674± .127 1.03 45.6

Table 1: Simulation results for the three different
market-maker types. These results are averages
from 100 episodes, each consisting of 100 trading
periods, and each with an independently sampled
“true” value. All differences are statistically signifi-
cant at a 0.05 confidence level. Plus-minus numbers
reflect 95% confidence intervals. Standard errors for
spread and number of trades are trivial compared to
the differences.

and Milgrom have shown that to at least break even in ex-
pectation, the market-maker must set the bid price lower
than, and the ask price higher than, E[V ] [7]. Two types
of market-maker considered in this paper are zero-profit
market-makers and myopically optimizing market-makers.

A Zero-Profit Market-Maker.
In a perfectly competitive, frictionless environment, the

market-maker’s equilibrium strategy is to set prices so as to
obtain zero profit in expectation. This condition leads to
a nice characterization of the bid and ask prices as Pb =
E[V |Sell] and Pa = E[V |Buy] [7]. Of course, given that
prices are actually quoted in some increments (like cents),
the zero-profit strategy effectively becomes an ε-profit strat-
egy and the market-maker quotes the closest integral value
with non-negative expected profit.4

The zero-profit equations can be solved explicitly [3]. In
the context of the model in this paper, the equations reduce
to (for the ask price):

Pa = E[V |Buy] =

1

Pr(Buy)

VmaxX
V =Vmin

Pr(N(0, σ2
W ) + V > Pa)V Pr(V )

Then Pa is the (attractive) fixed point of the operator
defined by the right-hand side.5 This fixed point can be
computed very efficiently by starting to iterate from E[V ] .
The bid price can be computed in the same way.

The concept of the zero-profit (or ε-profit) market-maker
can stand in as a proxy for efficient prices in the market
as a whole. The fiction of a price-setting market-maker is
convenient, but the same prices could be achieved by a va-
riety of other means. This way of looking at price dynamics
is useful from the systems perspective, although the algo-
rithmic problems of market-making are interesting in and of
themselves.

A Myopically Optimizing Market-Maker.
If the market-maker is a monopolistic price-setter, then

she can set prices so as to make positive profits. The sim-
plest such model is a market-maker who optimizes myopi-

4In terms of the expected profit vector described above, the
zero-profit prices are the the first non-negative expected-
profit prices as we move downwards and upwards from E[V ]
as Pb and Pa respectively.
5Technically Pa will be the ceiling of the fixed point.



cally, selecting the prices with highest expected profit at
each trading period. The short-term optimal bid price is
then the one that maximizes the expression E[πS |Pb = x]
derived above. The maximum is well-behaved in the model
presented here, with a single local and global maximum al-
ways occurring in practice for the bid and ask prices.

The selection of prices that attain these maxima guaran-
tees that for any given trading period, the expected profit
is maximized, but does not guarantee overall profit maxi-
mization in the sequential context. We show later that my-
opic optimization does not perform optimally over time by
demonstrating a method that performs better. This leaves
open the important algorithmic question of how to design
improved, or perhaps optimal, algorithms for this problem.

When the market-maker can face competition through
other traders placing limit orders, all bid prices lower than
the best bid in the order book, and all ask prices higher than
the best ask in the order book will yield zero expected profit
for that trading period, since the probability of executing a
trade at that price will be zero. In this case the myopically
optimal strategy for the market-maker reduces to placing
bids and asks that are just inside the spread (best bid plus
one cent and/or best ask minus one cent) if they have pos-
itive expected profit. This is similar to parasitic strategies
often employed by so-called “day traders.”

Note that it is even more difficult to think about an op-
timal sequential market-making strategy in the competitive
framework because the market-maker is no longer guaran-
teed a monopoly over all trade executions.

3.3.2 A “widening the spread” heuristic
A heuristic strategy for making profit suggested in [3] is

to compute the zero-profit bid and ask prices and then add
(subtract) some value δ to the ask (bid) price. Some in-
termediate value of δ will optimize profits within this class
of strategies, because widening the spread too much would
lead to insufficient trading to make profits.

3.3.3 Updating the Density Estimate
The market-maker uses the Bayesian updating method

described in [3]. All the points in the density estimate can
be updated based on whether a buy order, sell order, or
no order (equivalently, a limit order) was received. As an
example, suppose a buy order was received.

Pr(V = x|Buy) =
Pr(Buy|V = x) Pr(V = x)

Pr(Buy)

The denominator is the same for all x and can thus be ig-
nored and the updated vector renormalized. The second
term in the denominator is just the prior (from the exist-
ing density estimate), and the conditional probability of a
buy order can be computed as above from the normal dis-
tribution of noise in trader valuations. The density estimate
is initialized at the beginning of each episode to be normal
with mean µV and standard deviation σV .

4. SIMULATION RESULTS

4.1 Experimental Design
The experiments reported here follow the model described

above. For the “true value” distribution, µV = 75, σV =
1. The standard deviation of the distribution from which
individual trader valuations are drawn, σW = 0.2. Each

episode consists of n = 100 trading periods. When market-
makers use the spread-widening heuristic, they use δ = 0.10.
Results for those simulations in which the jump amounts are
the same across episodes are averaged across 10 episodes,
while results for simulations in which the jump amounts are
themselves random are averaged over 100 episodes.

4.2 Interpreting the Results
We will see below that prices follow a two-regime behav-

ior, which is one of the key findings reported in [3]. A price
jump is followed by a period of high spreads, heterogenous
information, and low volume of trading. Once this hetero-
geneity of information is resolved by the market-maker, trad-
ing settles into a regime of lower spreads and higher volume
trading. We call these regimes the price discovery regime
and the efficient markets regime respectively. Some of the
numbers reported below are dependent on the interaction of
these two regimes, and changing the length of each episode
would affect the numbers. For example, shorter episodes
may be dominated by the statistics of the price discovery
regime with higher spreads and less trading.

We can examine market properties from the perspectives
of at least three different players: (1) The average trader
incurs a higher cost of trading when the spread is high.
This is particularly so for traders who are not trading on
information but instead need to change their positions for
exogenous reasons such as liquidity constraints or hedging
considerations. It can also be costly for traders who attempt
to learn from prices, since trading is restricted in periods
of higher spread. (2) The exchange itself would prefer low
spreads and a high volume of trading. However, it is natural
for the spread to be significantly larger immediately follow-
ing an informational shock, and the exchange is interested
in having the spread return quickly to a reasonable level
quickly. (3) Self-interested market-makers want to optimize
their profit. While the exact behavior of the spread that
achieves this is not obvious, the market-makers would defi-
nitely want spreads significantly wider than the competitive
spreads during the efficient market regime.

4.3 A Price-Setting Market-Maker
The first set of simulations are in a market in which the

market-maker is a monopolistic price-setter. Table 1 shows
that the spread-widening heuristic outperforms the myopi-
cally optimizing market-maker in terms of profit while at
the same time providing more liquidity to the market and
maintaining a lower average spread.

The zero-profit market-maker, who can be thought of as
the aggregate outcome of a market with multiple compet-
itive market-makers, of course provides the most liquidity
to the market and quickly converges to a new regime of ho-
mogenous information, allowing for a greater volume of trad-
ing. The lower average spread and greater volume of trad-
ing can be seen from Table 1, and the fact that the market-
maker converges to the homogenous information regime faster
can be seen from Figure 3, which shows example behavior
for two different price jumps (the model is symmetric, so the
direction of the jump does not matter). The market-maker
does make some profit over the course of the simulation,
even though she is setting prices as competitively as possi-
ble. This is because trades can only occur at integral prices,
whereas the truly zero-profit prices may fall between two
dollar-and-cent values. This might be part of the solution
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Figure 3: Dynamics of the spread for the three different market-maker types when there is an external
(positive) shock of $1 (left) or $3 (right) to the “true” stock price. Spreads are averaged over 10 episodes.
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Figure 4: Transaction price behavior for the three
different market-maker types in one example paired
episode when there is an external (positive) shock of
$1 to the “true” stock price. The episode is paired in
the sense that the trader arriving at trading period
i has the same valuation across the three different
market-maker types.

to one of the questions of microstructure theory – where
do the small profits come from that must exist to persuade
market-makers to enter the game?

Figure 4 shows the actual price process in an example
episode where the true value jumped up one dollar. Note
that: (1) The first transaction does not occur for quite some
time after the start of the episode. The market-maker sets
the spread very wide, and then slowly narrows the spread
as she learns that no one is willing to trade at such a high
spread. If the amount of the jump had been greater, trad-
ing would have started earlier. The first few trades then
collapse the market-maker’s density estimate into a much
more concentrated region, allowing for smaller spreads and
then considerably more trading. (2) The “bounce” between
trades occurs partly because of the spread and partly be-

cause of the market-maker adjusting her beliefs in response
to past trades. Once the market-maker’s beliefs have be-
come concentrated, the former effect dominates the latter.
The market is much more orderly and prices do not fluctuate
as much in the competitive case.

4.3.1 The Exploration-Exploitation Tradeoff
The fact that a simple algorithm like the spread-widening

heuristic outperforms myopic optimization shows that the
myopic algorithm does not optimize over the sequential game.
This may not matter in a competitive setting because there
the market-maker has to compete for every trade, but when
she has a monopoly on price-setting, she can do better than
the myopically optimizing method.

Myopic optimization fails to achieve sequential optimal-
ity because prices serve two functions. In addition to being
the profit-making mechanism, prices also convey information
about the “true” value of the stock. A market-maker with
narrower spreads can concentrate her density estimate more
quickly than one with larger spreads. This will allow her
to make more trades, and potentially to make more prof-
its from future trades.6 The market-maker’s exploration-
exploitation tradeoff can be thought of as a tradeoff between
“price discovery” and “profit-taking.” The optimal strategy
for a market-maker in this setting is uncharacterized – this
is an interesting open problem.

4.4 Competition in the Limit Order Book
This section explores the effects on price dynamics of al-

lowing traders to place limit orders using the model speci-
fied above. Figure 5 shows that the competition induced by
limit-order placement on the part of traders leads to faster
discovery of the new price for both zero-profit and myopi-
cally optimizing market-makers. This is because traders will
come in and place limit orders early in the process, leading
to an earlier start to the trading process, and therefore, more
information becoming available earlier without the market-

6There is also a tradeoff between the probability of a trade
occurring and the expected profit given that the trade does
occur, but this is solved for in the profit maximization step.
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Figure 5: Dynamics of the spread for markets with a perfectly competitive market-maker (left) and a my-
opically optimizing market-maker (right) with and without traders who can compete with the market-maker
by placing limit orders. There is an external (positive) shock of $1 to the “true” stock price. Spreads are
averaged over 10 episodes.

maker having to actually make those trades.
In the zero-profit case there is little difference in the spreads

once the market has converged to the homogenous informa-
tion regime, since it would be hard to go lower than the 2-3
cent spreads which the zero-profit market-maker maintains
even without competition. In a market with a myopically
optimizing market-maker, the limit-order trading induces a
lower spread in the homogenous information regime.

Table 2 shows that market quality is significantly im-
proved in terms of both the average spread and number of
trades per episode for the case of the myopically optimizing
market-maker. For this experiment the “zero-profit plus-
minus δ” market-maker used δ = 0.05 so that the profits
could be comparable with that of the myopically optimizing
market-maker, since the profits when using δ = 0.10 were
significantly lower.

MM Type Profit Spread # Trades
Zero-profit 0.480± .110 0.24 88.52
Myopically opt. 2.910± .184 0.43 56.68
Zero-profit ±δ 2.821± .113 0.32 73.57
None N/A 0.64 43.36

Table 2: Simulation results when traders can also
place limit orders. Results are averages from 100
episodes, each consisting of 100 trading periods with
an independently sampled “true” value. δ is set to
0.05. The difference between the profits received
by the myopically optimizing and zero-profit ±δ
market-maker is not statistically significant at the
0.1 confidence level, while all other differences are
significant at the 0.05 confidence level. Plus-minus
numbers reflect 95% confidence intervals. Standard
errors for spread and number of trades are trivial
compared to the differences.

4.5 The Absence of a Market-Maker

Many studies of market microstructure ignore the role
of the market-maker, assuming prices form competitively
through limit order placement. To evaluate the influence
of market-making, one can simulate markets with only the
trading crowd placing limit orders and market orders us-
ing the model described above. Markets with zero-profit
market-makers are a limiting case with pricing as close to
competitive as feasible, but Figure 6 shows that price dis-
covery is faster and spreads are smaller even when there is
a myopically optimizing market-maker. Table 2 also shows
that the presence of the market-maker increases liquidity.

This shows that even a market-maker who is solely trying
to optimize her own immediate profit in a competitive set-
ting can improve the quality of the market. Thus, market-
making can serve as an effective trading strategy for indi-
vidual agents who do not possess superior information but
are willing to learn from prices, and their presence in turn
helps the process of price discovery. In efficient markets, we
would expect such traders to come into existence on their
own in light of the available opportunity for profit.

In practice, market-makers may be regulated by the mar-
ket (by, for example, setting rules on how large the spread
may be at any time, or penalizing market-makers for falling
short on measures of market quality) or their behavior may
be left up to the effects of competition.

5. DISCUSSION
From a market behavior perspective, this paper shows

that market-makers can speed up the process of price dis-
covery and lead to better market quality even when the
market-makers are not heavily regulated. In practice we
would expect market-makers to be more competitive, and
therefore perform even better along these dimensions, than
the myopically optimizing market-maker considered here.

From the algorithmic standpoint, this paper poses an im-
portant open problem – what is the optimal market-making
algorithm for a monopolistic, price-setting market maker in
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Figure 6: Dynamics of the spread for markets in which traders can place limit orders without a market-maker
and with a myopically optimizing market-maker. There is an external (positive) shock of $1 to the “true”
stock price. Spreads are averaged over 100 episodes for the case without a market-maker and 10 episodes for
the case with a market-maker.

the sequential context? Myopic optimization can be out-
performed by simple algorithms, so it will be interesting to
try and devise better algorithms for balancing the market-
maker’s exploration-exploitation tradeoff. Initial experiments
suggest that a good strategy may be to maintain artificially
low spreads soon after a jump, and make up the losses in-
curred in the price-discovery regime by exploiting the quicker
price discovery process in the homogenous information regime.

While the trading model of this paper is stylized, sim-
ple models have been shown to produce rich and interesting
market behavior in many cases (for example, [6, 3, 16]).
These models have qualitatively reproduced many real mar-
ket phenomena. We hope the role and importance of market-
makers will garner more attention in the algorithmic litera-
ture and in studies of novel electronic markets.
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